Lecture 14

Reflection, Transmission, and
Interesting Physical Phenomena

We have seen the derivation of a reflection coefficient in a transmission line that relates the
amplitude of the reflected wave to that of the incident wave. By doing so, we have used a
simplified form of Maxwell’s equations, the telegrapher’s equations which are equations in
one dimension. Here, we will solve Maxwell’s equations in its full glory, but in order to do so,
we will look at a very simple problem of plane wave reflection and transmission at a single
plane interface.

This will give rise to the Fresnel reflection and transmission coefficients, and embedded
in them are interesting physical phenomena. We will study these interesting phenomena as
well.

(Much of the contents of this lecture can be found in Kong, and also the ECE 350X
lecture notes. They can be found in many textbooks, even though the notations can be
slightly different [31,32,44,50,54,65,79,83, 85, 86].)

14.1 Reflection and Transmission—Single Interface Case

We will derive the plane-wave reflection coefficients for the single interface case between two
dielectric media. These reflection coefficients are also called the Fresnel reflection coefficients
because they were first derived by Austin-Jean Fresnel (1788-1827). Note that he lived before
the completion of Maxwell’s equations in 1865. But when Fresnel derived the reflection
coefficients in 1823, they were based on the elastic theory of light; and hence, the formulas
are not exactly the same as what we are going to derive (see Born and Wolf, Principles of
Optics, p. 40 [58]).

The single plane interface, plane wave reflection and transmission problem, with com-
plicated mathematics, is homomorphic to the transmission line problem. The complexity
comes because we have to keep track of the 3D polarizations of the electromagnetic fields in
this case. We shall learn later that the mathematical homomorphism can be used to exploit
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the simplicity of transmission line theory in seeking the solutions to the multiple dielectric
interface problems.

14.1.1 TE Polarization (Perpendicular or E Polarization)'

Figure 14.1: A schematic showing the reflection of the TE polarization wave impinging on a
dielectric interface.

To set up the above problem, the wave in Region 1 can be written as the superposition or sum
of the incident plane wave and reflected plane wave. Here, E;(r) and E,(r) are the incident
and reflected plane waves, respectively. The total field is E;(r) + E,.(r) which are the phasor
representations of the fields. We assume plane wave polarized in the y direction where the
wave vectors are 3; = T8z + 28z, Br = T0re — Z08rz, Bt = TPz + 208:., respectively for the
incident, reflected, and transmitted waves. Then, from Section 7.3, we have

E; = jEge /P = jEge Pt iPizz (14.1.1)

which represents a uniform incident plane wave, and
E, = §RTPEye Prr = gRTF EBye1Pravtibr=2 (14.1.2)
which is a uniform reflected wave. In Region 2, we only have transmitted plane wave; hence

E, = §TTFEye 7P+ ™ = gTTE Bye I Pram—ibiz2 (14.1.3)

IThese polarizations are also variously know as TE., or the s and p polarizations, a descendent from the
notations for acoustic waves where s and p stand for shear and pressure waves respectively.
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In the above, the incident wave is known and hence, Ey is known. From (14.1.2) and (14.1.3),
RTE and TTF are unknowns yet to be sought. To find them, we need two boundary conditions
to yield two equations.? These boundary conditions are tangential E field continuous and
tangential H field continuous, which are 7 x E continuous and 7 x H continuous conditions
at the interface.

Imposing n x E continuous at z = 0, we get

Ege Pt  RTEE e Pt = TTER e Pty (14.1.4)

where V implies “for all”. In order for the above to be valid for all x, it is necessary that
Biz = Bre = Bix, which is also known as the phase matching condition.? From the above, by
letting B = Bre = B1sinb; = [1sinb,., we obtain that 6, = 6; or that the law of reflection
that the angle of reflection is equal to the angle of incidence. By letting B;, = B1sinf; =
Btz = Pa2sinby;, we obtain Snell’s law that f;sin€; = fosin6;. (This law of refraction that
was also known in the Islamic world in the 900 AD. [94]).

The exponential terms or the phase terms on both sides of (14.1.4) are the same. Now,
canceling common terms on both sides of the equation (14.1.4), the above simplifies to

1+ RTE =TTF (14.1.5)

To impose 7 x H continuous, one needs to find the H field using V x E = —jwuH. By
letting V with —j3, then we have H = —j3 x E/(—jwu) = 8 x E/(wp). By so doing*

_BixEi _Bix gEoe_j'B” _ EPix — 3Bz Eye—iBir

H; (14.1.6)
w1 Wity w1
T X E’l" T X ] —q . z TT r TZ —q .
H =P _ B X preg —iper _ 2o T80 prp g g (14.1.7)
w1 Wity W
x E X g . 3Btz — TPt .
g, = P Be B Xdireg s _ P Z 20 qrpp —ipir (14.1.8)
Wo Wik W2
Imposing n x H continuous or H, continuous at z = 0, we have
_ Pz Ege P 4 Prz RTE e Ibrer = _ P TTE Bye= Pt (14.1.9)
w1 w1 W2

As mentioned before, the phase-matching condition requires that £;, = B, = Bi. The
dispersion relation for plane waves requires that in their respective media,

2+ BL =B+ B =wier = B, medium 1 (14.1.10)
Bre + B7. = WPpaes = 3, medium 2 (14.1.11)

2Here, we will treat this problem as a boundary value problem where the unknowns are sought from
equations obtained from boundary conditions.

3The phase-matching condition can also be proved by taking the Fourier transform of the equation with
respect to z. Among the physics community, this is also known as momentum matching, as the wavenumber
of a wave is related to the momentum of the particle.

4We note here that field theory is a lot more complicated than transmission line theory. That is the
triumph of transmission line theory as well.
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Since
Biz = Bra = Pta = Pa (14.1.12)
the above implies that
Biz = Brz = P12 (14.1.13)
Moreover, B;, = B2, # B1. usually since 81 # B2. Then (14.1.9) simplifies to
@(1 — RTF) = Pez pre (14.1.14)
Ha 2

where 81, = \/B7 — 52, and Be, = /B3 — (2.

Solving (14.1.5) and (14.1.14) for RT¥ and TTF yields
RTE _ <ﬂlz o ﬁ2z> / <ﬁlz + ﬁ2z) (14115)
M1 25 M1 25
TTE — 9 (5”) / (ﬂ“ + 52Z) (14.1.16)
H1 H1 H2

14.1.2 TM Polarization (Parallel or H Polarization)?®

Figure 14.2: A similar schematic showing the reflection of the TM polarization wave impinging
on a dielectric interface. The solution to this problem can be easily obtained by invoking
duality principle.

5Also known as TM., polarization.
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The solution to the TM polarization case can be obtained by invoking duality principle where
we do the substitution E - H, H — —E, and ¢ = ¢ as shown in Figure 14.2. The reflection
coefficient for the TM magnetic field is then

RTM — (ﬂlz _ BQZ) / (Blz + /B2z> (14'1.17)
€1 p) €1 €2

TTM _ o (ﬁlz> / <512 + ﬁ%) (14.1.18)
€1 €1 €2

RTM TTM

Please remember that and are reflection and transmission coefficients for the
magnetic fields, whereas RT* and TT® are those for the electric fields. Some textbooks may
define these reflection coefficients based on electric field only, and they will look different, and
duality principle cannot be applied.

14.2 Interesting Physical Phenomena

Three interesting physical phenomena emerge from the solutions of the single-interface prob-
lem. They are total internal reflection, Brewster angle effect, and surface plasmonic
resonance. We will look at them next.
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14.2.1 Total Internal Reflection

Figure 14.3: Wave-number surfaces in two regions showing the phase matching condition.
The wave number in medium ¢ is larger than the wave number in medium 0. The wave
vectors for the incident wave, reflected wave, and transmitted wave have to be aligned in
such a way that their components parallel to the interface are equal in order to satisfy the
phase-matching condition. One can see that Snell’s law is satisfied when the phase-matching
condition is satisfied.

Total internal reflection comes about because of phase matching (also called momentum
matching). This phase-matching condition can be illustrated using S-surfaces (same as k-
surfaces in some literature), as shown in Figure 14.3. It turns out that because of phase
matching, for certain interfaces, 82, becomes pure imaginary.
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Figure 14.4: Wave-number surfaces in two regions showing the phase matching condition.
The wave number in medium ¢ is smaller than the wave number in medium 0. The figure
shows in incident wave vector coming in at the critical angle. Then the transmitted wave
vector is parallel to the interface as shown. When the incident angle is larger than the critical
angle, 8, becomes an imaginary number the wave vector in Region ¢ is complex and cannot
be drawn.

As shown in Figures 14.3 and 14.4, because of the dispersion relation that 32, + 32, =

2 + B2 = B2, B2, + BZ, = [33, they are equations of two circles in 2D whose radii are £

and fa, respectively. (The tips of the 3 vectors for Regions 1 and 2 have to be on a spherical

surface in the 3,, By, and . space in the general 3D case, but in this figure, we only show a
cross section of the sphere assuming that 8, = 0.)

Phase matching implies that the xz-component of the 3 vectors are equal to each other
as shown. One sees that 6; = 6, in Figure 14.4, and also as 6; increases, #; increases. For
an optically less dense medium where 2 < 31, according to the Snell’s law of refraction, the
transmitted 3 will refract away from the normal, as seen in the figure (where k is synonymous
with our 8). Therefore, eventually the vector B3; becomes parallel to the x axis when S, =
Bre = B2 = wy/fi2é2 and §; = m/2. The incident angle at which this happens is termed the
critical angle 6. (see Figure 14.4).

Since B;; = B1sinb; = By, = f1siné, = B, or

o _ Vi2e2 2 (14.2.1)

51 B VH1EL ni

where n; is the reflective index defined as ¢ /v; = /1:€;/+/fo€0 where v; is the phase velocity

sinf, = sinf; = sin b, =
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of the wave in Region i. Hence,

0. = sin"*(ng/n1) (14.2.2)

When 6; > 0.. 8, > B2 and o, = /B2 — B,° becomes pure imaginary. When fs,

becomes pure imaginary, the wave cannot propagate in Region 2, or 83, = —jas,, and the
wave becomes evanescent. The reflection coefficient (14.1.15) becomes of the form

RTF = (A—jB)/(A+jB) (14.2.3)

Since the numerator is the complex conjugate of the denominator. It is clear that |RT| = 1
and that RTP = e7975  Therefore, a total internally reflected wave suffers a phase shift. A
phase shift in the frequency domain corresponds to a time delay in the time domain. Such
a time delay is achieved by the wave traveling laterally in Region 2 before being refracted
back to Region 1. Such a lateral shift is called the Goos-Hanschen shift as shown in Figure
14.5 [58]. A wave that travels laterally along the surface of two media is also known as lateral
waves [95, 96].

(Please be reminded that total internal reflection comes about entirely due to the phase-
matching condition when Region 2 is a faster medium than Region 1. Hence, it will occur
with all manner of waves, such as elastic waves, sound waves, seismic waves, quantum waves
etc.)

Figure 14.5: Goos-Hanschen Shift. A phase delay is equivalent to a time delay (courtesy of
Paul R. Berman (2012), Scholarpedia, 7(3):11584 [97]).

The guidance of a wave in a dielectric slab is due to total internal reflection at the dielectric-
to-air interface. The wave bounces between the two interfaces of the slab, and creates evanes-
cent waves outside, as shown in Figure 14.6. The guidance of waves in an optical fiber works
by similar mechanism of total internal reflection, as shown in Figure 14.7. Due to the tremen-
dous impact the optical fiber has on modern-day communications, Charles Kao, the father of
the optical fiber, was awarded the Nobel Prize in 2009. His work was first published in [98].
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Figure 14.6: The total internal reflections at the two interfaces of a thin-film waveguide can
be used to guide an optical wave (courtesy of E.N. Glytsis, NTUA, Greece [99]).

Figure 14.7: An optical fiber consists of a core and a cladding region. Total internal reflections
occur at the core-cladding interface. They can guide an optical wave in the fiber (courtesy of
Wikepedia [100]).

Waveguides have affected international communications for over a hundred year now.
Since telegraphy was in place before the full advent of Maxwell’s equations, submarine cables
for global communications were laid as early as 1850’s. Figure 14.8 shows a submarine cable
from 1869 using coaxial cable, and one used in the modern world using optical fiber.
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Figure 14.8: The picture of an old 1869 submarine cable made of coaxial cables (left), and
modern submarine cable made of optical fibers (right) (courtesy of Atlantic-Cable [101], and
Wikipedia [102]).



